

Scoring dynamics in professional sports: tempo, balance, predictability

Sears Merritt, Aaron Clauset

Why study sports competitions?

Ideal environment to study fundamental properties of competition.

- Level playing field
- Clear and enforceable rules
- Copious amounts of detailed, longitudinal data

Outline

- Model of competition
- Data set
- Analysis of timing, balance, points
- Simulation
- Prediction

Model of competition

Probability of event occurring at time t
$\operatorname{Pr}($ event $)(t)$

Balance

Probability of winning an event
$\operatorname{Pr}\left(S_{r}\right.$ wins $)$

Points

Probability of event being worth i points $\operatorname{Pr}($ points $=i)$

$$
\operatorname{Pr}\left(\Delta S_{r}=i\right)(t)=\operatorname{Pr}(\text { event })(t) \operatorname{Pr}\left(S_{r} \text { wins }\right) \operatorname{Pr}(\text { points }=i)
$$

Tempo

Ideal $\quad \sim \operatorname{Poisson}(\lambda)$
Non-ideal $\quad \lambda(t)=\lambda_{0}+\alpha(t)$

Balance

Ideal $\sim \operatorname{Bernoulli}(c=1 / 2)$
Non-ideal $\operatorname{Pr}(c)=\operatorname{Beta}(\beta, \beta)$

Scoring event data

sport	abbr.	time	competitions	scoring events	total teams
Pro. football	NFL	$2000-2009$	2,654	19,814	31
Col. football	CFB	$2000-2009$	14,588	120,829	486
Pro. hockey	NHL	$2000-2009$	11,744	47,539	29
Pro. basketball	NBA	$2002-2010$	11,813	$1,091,719$	31

Scoring event: (team, game clock, point value) to nearest second

Tempo

Tempo: early phase

Tempo: steady phase

Tempo: end phase

Tempo: inter-arrivals, correlation

Timing - cumulative events

Balance

Independent scoring events

$$
\operatorname{Pr}\left(S_{r}\right)=\binom{S_{r}+S_{b}}{S_{r}} c^{S_{r}}(1-c)^{S_{b}}
$$

Maximum likelihood estimator

$$
\hat{c}=\frac{S_{r}}{S_{r}+S_{b}}
$$

Balance

Balance

$$
\begin{aligned}
\mathcal{L} & =\prod_{k=1}^{N} \operatorname{Pr}\left(S_{r_{k}}, S_{b_{k}} \mid c\right) \operatorname{Pr}(c) \\
\mathcal{L} & =\prod_{k=1}^{N} c^{S_{r_{k}}}(1-c)^{S_{b_{k}}} \frac{\beta^{\beta-1}(1-c)^{\beta-1}}{\mathrm{~B}(\beta, \beta)} \\
\ln \mathcal{L}= & \sum_{k=1}^{N} \ln \left[\mathrm{~B}\left(S_{r_{k}}+\beta, S_{b_{k}}+\beta\right)\right]-\ln [\mathrm{B}(\beta, \beta)]
\end{aligned}
$$

Maximize w.r.t. β

Balance

Lead dynamics

"Rich get poorer"

Points

	fraction		
point value	NFL	CFB	NBA
1	-	-	0.097
2	0.009	0.014	0.738
3	0.290	0.017	0.161
6	0.032	0.071	-
7	0.427	0.514	-
8	0.016	0.018	-

Non-parametric simulation

$$
\begin{aligned}
& \hline t, S_{r}, S_{b} \leftarrow 0 \\
& \text { while } t \leq T \text { do } \\
& t \leftarrow \mathrm{t}+\text { get_next_time }() \\
& w \leftarrow \text { get_winner }() \\
& p \leftarrow \text { get_points }() \\
& \text { if } \mathrm{w}=S_{r} \text { then } \\
& S_{r} \leftarrow S_{r}+p \\
& \text { else } \\
& S_{b} \leftarrow S_{b}+p \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

Simulation

Outcome prediction

Markov chain state

space						
\downarrow		-2	-1	0	1	2
$\mathrm{P}=$-2$=$0 -1	0.3	0.4	0.3	0		
0						
1			0			
2				0		
						0

Outcome prediction

Probability of lead transitioning from i to j at next scoring event

Outcome prediction

After each event:
I. Estimate remaining number of scoring events
2. Compute the probability lead ends $\quad \operatorname{Pr}($ team r wins $\mid l, n)=\sum_{j=1} P_{l j}^{n}$
in state $\mathbf{>} 0$

Outcome prediction

CFB

Conclusions

- Global model of competition?
- Tempo follows a Poisson process
- First order Markov process captures nearly all scoring dynamics
- Competitions are predictable

The end

Thanks for listening

