

Scoring dynamics in professional sports: tempo, balance, predictability

Sears Merritt, Aaron Clauset

Wednesday, September 18, 13

Why study sports competitions?

Ideal environment to study fundamental properties of competition.

- Level playing field
- Clear and enforceable rules
- Copious amounts of detailed, longitudinal data

Outline

- Model of competition
- Data set
- Analysis of timing, balance, points
- Simulation
- Prediction

Model of competition

Tempo

Probability of event occurring at time t Pr(event)(t)

Balance

Probability of winning an event $\Pr(S_r \text{ wins})$

Points

Probability of event being worth i points Pr(points = i)

 $\Pr(\Delta S_r = i)(t) = \Pr(\operatorname{event})(t) \Pr(S_r \text{ wins}) \Pr(\operatorname{points} = i)$

Ideal $\sim \text{Poisson}(\lambda)$ Non-ideal $\lambda(t) = \lambda_0 + \alpha(t)$

Balance Ideal Non-ideal frequency 0.25 0.5 0.75 0 scoring bias, c

Ideal $\sim \text{Bernoulli}(c = 1/2)$

Non-ideal $Pr(c) = Beta(\beta, \beta)$

Scoring event data

sport	abbr.	time	$\operatorname{competitions}$	scoring events	total teams
Pro. football	NFL	2000-2009	$2,\!654$	19,814	31
Col. football	CFB	2000-2009	$14,\!588$	$120,\!829$	486
Pro. hockey	NHL	2000-2009	11,744	$47,\!539$	29
Pro. basketball	NBA	2002-2010	$11,\!813$	$1,\!091,\!719$	31

Scoring event: (team, game clock, point value)

Tempo

Tempo: early phase

Tempo: steady phase

3500

3500

Tempo: end phase

Tempo: inter-arrivals, correlation

Timing - cumulative events

Independent scoring events

$$\Pr(S_r) = \binom{S_r + S_b}{S_r} c^{S_r} (1 - c)^{S_b}$$

Maximum likelihood estimator

$$\hat{c} = \frac{S_r}{S_r + S_b}$$

$$\mathcal{L} = \prod_{k=1}^{N} \Pr(S_{r_k}, S_{b_k} | c) \Pr(c)$$
$$\mathcal{L} = \prod_{k=1}^{N} c^{S_{r_k}} (1-c)^{S_{b_k}} \frac{c^{\beta-1} (1-c)^{\beta-1}}{B(\beta, \beta)}$$

$$\ln \mathcal{L} = \sum_{k=1}^{N} \ln[\mathrm{B}(S_{r_k} + \beta, S_{b_k} + \beta)] - \ln[\mathrm{B}(\beta, \beta)]$$

Maximize w.r.t. β

Lead dynamics

Points

Non-parametric simulation

 $t, S_r, S_b \leftarrow 0$ while $t \leq T$ do $t \leftarrow t + get_next_time()$ $w \leftarrow \text{get_winner()}$ $p \leftarrow \text{get_points}()$ if $w = S_r$ then $S_r \leftarrow S_r + p$ else $S_b \leftarrow S_b + p$ end if end while

Simulation

Markov chain state

space		-2	-1	0	1	2
	-2	0	0.3	0.4	0.3	0
	-1	• •	0			
P =	0			0		
	1				0	
	2					0

Outcome prediction

Outcome prediction

After each event: I. Estimate remaining number of scoring events

$$n = \sum_{i=t}^{T} \Pr(\text{event})(t)$$

2. Compute the probability lead ends Pr(team r in state > 0

 $\Pr(\text{team } r \text{ wins } \mid l, n) = \sum_{j=1}^{k} P_{lj}^{n}$

Outcome prediction

1.0

NHL

Conclusions

- Global model of competition?
- Tempo follows a Poisson process
- First order Markov process captures nearly all scoring dynamics
- Competitions are predictable

The end

Thanks for listening

Wednesday, September 18, 13